Title: Climate Change in Context: What Does The Past Tell Us About The Future?
Course Code: SCI 68
Instructors Michael McWilliams and Franklin Orr

Class Sessions and Recording
Meeting days and times: Wednesdays 7:00 - 8:50pm PDT
Meeting location: Zoom
Class sessions will be recorded.

Course Features
• Live sessions
 o Lectures with some Q&A and student participation
 o Guest speakers
• Assignments & Coursework
 o Course materials posted in Canvas
 o Written assignment for letter grade students: short research paper
 o Instructors will provide feedback on assignments
 o Students can give presentations (recorded or live)
• Individual conferences available upon request

Course Summary
Course goal: To better understand the magnitude and importance of modern climate change by learning about how Earth’s systems have worked in the past to regulate surface temperatures, to support life, and to respond to extreme environmental events such as glaciation, volcanism, and meteorite impacts.

Modern climate change is frequently described as an existential threat to humanity. But how does this threat stack up when compared to the environmental crises Earth and its lifeforms have experienced in the past? This course targets concerned citizens who would like to better understand how the components of the Earth system (its atmosphere, hydrosphere, biosphere, and lithosphere) work to regulate climate, and who would like to know more about what we can expect in the future.

This course does not require a background in science, only a desire to learn more about the Earth. Importantly, this course is not about policy; rather, it is about the science that can (and should!) inform policy.

1 Today, no nation can find lasting security without addressing the climate crisis. We face all kinds of threats in our line of work, but few of them truly deserve to be called existential. The climate crisis does.” Secretary of Defense Lloyd J. Austin III (22 April 2021).

Please contact the Stanford Continuing Studies office with any questions
365 Lasuen St., Stanford, CA 94305
continuingstudies@stanford.edu
650-725-2650
*Please see course page for full description and additional details.

Grade Options and Requirements

- No Grade Requested (NGR)
 - This is the default option. No work will be required, no credit shall be received, and no proof of attendance can be provided.

- Credit/No Credit (CR/NC)
 - Students should attend and participate in 75% of the class sessions and actively participate in live online discussions.

- Letter Grade
 - Attendance and participation as for CR/NC students. Additionally, students will complete a short (less than 10 pages) research paper on a mutually agreed upon topic of interest to both the student and the instructors.

*Please Note: If you require proof that you completed a Continuing Studies course for any reason (for example, employer reimbursement), you must choose either the Letter Grade or Credit/No Credit option. Courses taken for NGR will not appear on official transcripts or grade reports.

Textbooks/Required Materials

First Assignment
First chapter in Knoll.

Tentative Class Structure

Students will derive maximal benefit by attending the class sessions live, so that they may actively participate in discussions, pose questions, and explore topics of interest in more detail. If it is necessary to miss a class session, students are encouraged to watch the recordings to ensure continuity. Class sessions will follow the rough outline below. Individual topics may expand or contract depending on student interests and time available.
<table>
<thead>
<tr>
<th>Theme</th>
<th>Topics</th>
</tr>
</thead>
</table>
| Overview | The Keeling Curve and The Pumphandle Plot
| | Earth’s energy budget—Sankey diagrams
| | A brief history of climate change
| | Getting a handle on geological time
| | What do people think? - summary of survey data
| | Life on Earth – The Really Big Events in context
| Earth’s atmosphere through time | The greenhouse effect
| | The important greenhouse gases: their sources, sinks
| | How long do greenhouse gases remain in the atmosphere?
| | Geochemical box models
| | Present day atmospheric composition - how did it get that way?
| Global tectonics and climate | Subduction, rifting and interactions with atmosphere and oceans
| | Geochemistry and temperature regulation
| Solar system context | A brief history of the solar system, Venus/Mars teaser
| | Is Earth in the ‘Goldilocks zone’?
| | Where did the (water, oxygen, CO₂, methane) come from?
| | Variations in solar output, albedo
| | The Faint Early Sun hypothesis
| | Earth’s orbital variations and Milankovitch cycles
| Feedbacks and cycles | Positive and negative feedback - how it works (examples)
| | Ice-albedo, long and short-term carbon cycles
| How do we know what we know? | Paleoclimate indicators
| | Isotopic tools for telling time and measuring ancient temperature
| Ancient climate 1 | Precambrian climate change
| | Early life forms
| | The Great Oxygenation Event
| | The Cambrian explosion
| Ancient climate 2 | Paleozoic and Mesozoic climate 600-60 million years ago
| | The mother of all mass extinctions 252 million years ago
| | The dinosaur killer(s)? 65 million years ago
| Ancient climate 3 | The last 100 million years: Paleocene-Eocene Thermal Maximum
| Recent climate 1 | The last million years: Milankovitch cycles and A Private Universe
| Recent climate 2 | The last 100,000 years: Icehouse/greenhouse
| Recent climate 3 | The last 1000 years
| The Anthropocene | Did we really do all that?
| Future climate trajectories | How we model future climate change
| | What we know and what we don’t know
| | How big are the uncertainties and what limits do they provide?
| | How much is already “baked in”?
| | Policy choices-The options we have, the options we have already lost
| Climate change on other planets | Our nearest neighbors, Venus and Mars
| Summary | Earth will be just fine. Humans, maybe not so much. You can thank global tectonics.

Please contact the Stanford Continuing Studies office with any questions
365 Lasuen St., Stanford, CA 94305
continuingstudies@stanford.edu
650-725-2650