fullscreen background
Skip to main content

Winter Quarter

Winter Catalogues
Now Available
Registration Opens Nov 30
shopping cart icon0

Courses

« Back to Professional & Personal Development

CS 65 W — Data Analysis with Python

Quarter: Winter
Course Format: Flex Online (About Formats)
Duration: 6 weeks
Date(s): Feb 1—Mar 12
Drop Deadline: Feb 4
Unit: 1
Tuition: $420
Instructor(s): Matt Harrison
Limit: 60
Status: Registration opens Nov 30, 8:30 am (PT)
Please Note: Some of our refund deadlines have changed. See this course's drop deadline above and click here for the full policy.
Winter
Flex Online(About Formats)
Date(s)
Feb 1—Mar 12
6 weeks
Drop By
Feb 4
1 Unit
Fees
$420
Instructor(s):
Matt Harrison
Limit
60
Registration opens Nov 30, 8:30 am (PT)
Please Note: Some of our refund deadlines have changed. See this course's drop deadline above and click here for the full policy.
We live in a world surrounded by data. But how do we observe and extract value from this data? How do we explore and begin to understand and visualize large data sets? Are there relationships in the data or unusual observations we can uncover? This course will help students learn how to perform data analysis using Python. We will acquire data, examine it, clean it up, visualize it, and begin to infer conclusions from it. We will walk through the basics of data analysis using the Python toolchain. These popular tools are both open source and very popular among data scientists and analysts in both academia and industry. They include the Jupyter Notebook, Pandas, plotting with Matplotlib and Seaborn, and some basics of machine learning using Scikit-Learn. We will explore categorical data that provides labels such as the make of a car or the web browser of a visitor to a website. We will also discuss charts, tables, and correlations, and explore some color theory. Finally, we will dive into numerical data, including how to create, interpret, and plot data with multiple dimensions. Students will leave the course able to analyze a data set from start to finish, providing graphical and numerical summaries, correlations, and outliers.

Previous programming experience is useful, but not essential.

Matt Harrison, Principal Consultant and Corporate Trainer, MetaSnake

Matt Harrison has been using Python since 2000 and is a Python, data science, and corporate training consultant. He is the author or a co-author of several books on Python. In the past, he has worked across the domains of search, build management and testing, business intelligence, and storage.
DOWNLOAD THE PRELIMINARY SYLLABUS » (subject to change)