fullscreen background
Skip to main content

Winter Quarter

Winter Catalogues
Now Available
Registration Opens Nov 30
shopping cart icon0

Courses

« Back to Professional & Personal Development

CS 76 W — An Introduction to Data Science in R

Quarter: Winter
Course Format: Flex Online (About Formats)
Duration: 10 weeks
Date(s): Jan 11—Mar 19
Drop Deadline: Jan 14
Units: 2
Tuition: $655
Instructor(s): Mohammad Shokoohi-Yekta
Limit: 25
Status: Registration opens Nov 30, 8:30 am (PT)
Please Note: Some of our refund deadlines have changed. See this course's drop deadline above and click here for the full policy.
Winter
Flex Online(About Formats)
Date(s)
Jan 11—Mar 19
10 weeks
Drop By
Jan 14
2 Units
Fees
$655
Instructor(s):
Mohammad Shokoohi-Yekta
Limit
25
Registration opens Nov 30, 8:30 am (PT)
Please Note: Some of our refund deadlines have changed. See this course's drop deadline above and click here for the full policy.
Living in the information age, we are surrounded and overwhelmed by data, making it imperative for us to find ways to identify the data we need, classify and organize it, and draw conclusions from it. Data science is a very practical discipline with many applications in business, science, and government, such as targeted marketing, web analysis, disease diagnosis and outcome prediction, weather forecasting, credit risk and loan approval, customer relationship modeling, and fraud detection. This course presents a high-level overview of three main topics in data science: basic analysis and visualization of data, introductory machine learning concepts, and basic programming in R (a programming language that is widely used for data analysis). The course will include lectures and hands-on, interactive problem-solving. Examples will come from real-world problems in weather, marketing, biology, stocks, neuroscience, medicine, and other disciplines. By the end of the course, students will be able to apply data science techniques to real-world applications in order to draw meaningful conclusions.

No computer science experience is necessary.

Mohammad Shokoohi-Yekta, Senior Data and Applied Scientist, Microsoft

Mohammad Shokoohi-Yekta received a PhD in computer science from UC Riverside. He was a data scientist at Apple and earlier worked for Samsung, Bosch, GE, and UCLA Research Labs. He is the author of Applications of Mining Massive Time Series Data. He has also been a keynote speaker at more than forty data summits and conferences around the world.
DOWNLOAD THE PRELIMINARY SYLLABUS » (subject to change)